
Django REST Framework Delegated
Permissions Documentation

Release 0.5

Mirek Simek

Jun 06, 2018

Contents:

1 List of classes 1

2 Getting started 3
2.1 Preparation . 3
2.2 Adding permissions . 4

3 Custom permissions 7

i

ii

CHAPTER 1

List of classes

1

Django REST Framework Delegated Permissions Documentation, Release 0.5

2 Chapter 1. List of classes

CHAPTER 2

Getting started

For this sample we will have an Invoice containing an Address. We want to set up permissions on Address so that the
user that holds permissions to Invoice instance can view/modify the associated Address instance.

2.1 Preparation

Install django>=1.11, djangorestframework and django-rest-delegated-permissions

virtualenv --python=python3 venv
source venv/bin/activate
pip install django djangorestframework django-rest-delegated-permissions

Create your models:

class Address(models.Model):
... address fields
class Meta:

permissions = (
('view_address', 'Can view address'),

)

class Invoice(models.Model):
address = models.OneToOneKey(Address, related_name='invoice')
class Meta:

permissions = (
('view_invoice', 'Can view invoice'),

)

Note: we have added declaration of an extra permission in the format of appname.view_model, users with this
permission will be able to have a read access to the model instances (via REST’s GET method either on collection of
models or instance of a model).

And REST viewsets and serializers:

3

Django REST Framework Delegated Permissions Documentation, Release 0.5

class AddressViewSet(ModelViewSet):
queryset = Address.objects.all()
serializer = AddressSerializer
...

class InvoiceViewSet(ModelViewSet):
queryset = Invoice.objects.all()
serializer = InvoiceSerializer
...

Add routing to your urls.py, generate a couple of instances of Invoice and Address and check that it works so far:

router = DefaultRouter()
router.register(r'invoice', InvoiceViewSet)
router.register(r'address', AddressViewSet)

urlpatterns = [
url(r'^admin/', admin.site.urls),
url('', include(router.urls))

]

2.2 Adding permissions

To add secure the viewset endpoints, you traditionally have to:

1. secure the modification operations via permissions defined on the viewset class

2. override its filter_queryset method to include only those objects that user has rights to (for example for resource
listing)

django-rest-related-permissions groups these two cases into one
rest_delegated_permissions.BasePermission class and as a convenience provides
rest_delegated_permissions.DjangoCombinedPermission that contains these two steps for
django model and django guardian permissions.

To be able to use permissions from related class (referenced via ForeignKey, m2m, etc) one needs to:

• remove permissions from viewsets

• link them to model classes so that Address’s permission checker has an access to the Invoice permission
checker

• put them into one registry that than composes queryset filters (so it is able to provide the
filter_queryset implementation) and validates if user has rights to perform operation on related
class.

• override filter_queryset and get_permissionsmethods with implementation that uses the per-
missions from the registry

These steps are implemented inside the rest_delegated_permissions.RestPermissions class. Let’s
use it:

perms = RestPermissions(
add_django_permissions=True

)

apply the same permissions that are on invoice

(continues on next page)

4 Chapter 2. Getting started

Django REST Framework Delegated Permissions Documentation, Release 0.5

(continued from previous page)

to address + add django and django guardian permissions
defined on Address model
@perms.apply(permissions=DelegatedPermission(perms, 'invoice'))
class AddressViewSet(ModelViewSet):

queryset = Address.objects.all()
serializer = AddressSerializer
...

apply only django and django guardian permissions on this model
@perms.apply()
class InvoiceViewSet(ModelViewSet):

queryset = Invoice.objects.all()
serializer = InvoiceSerializer
...

The code above is a shortcut - it at first extracts model class from ViewSet queryset field, associates the permissions
given inside the decorator call with this class and sets up filter_queryset and get_permissions. More
explicitly, the code can be rewritten as:

perms = RestPermissions(
add_django_permissions=True

)
the permissions below are combined via OR operator
perms.set_model_permissions(Address, [

DelegatedPermission(perms, 'invoice'),
DjangoCombinedPermission()

])
perms.set_model_permissions(Invoice, [

DjangoCombinedPermission()
])

@perms.apply()
class AddressViewSet(ModelViewSet):

...

@perms.apply()
class InvoiceViewSet(ModelViewSet):

...

Note: Each model can be registered into RestPermissions only once. If you need multiple viewsets with different
settings of permissions, use multiple instances of RestPermissions.

You can even use rest-condition package to combine permissions via AND or OR:

perms = RestPermissions(
add_django_permissions=False

)
the permissions below must both hold to give access
perms.set_model_permissions(Address, [

Condition.And(
DelegatedPermission(perms, 'invoice'),
DjangoCombinedPermission())

])

If you try the code now, you will not have the access to any objects and listing will return an empty answer.

2.2. Adding permissions 5

Django REST Framework Delegated Permissions Documentation, Release 0.5

curl -u username:password http://localhost:8000/address

If you set up django permissions on User and try again, you will the access:

user = User.objects.get(...)
user.user_permissions.add(

Permission.objects.get('app.view_invoice'))

curl -u username:password http://localhost:8000/address

returns the previously created addresses

Similarly, you can add django guardian permission on a singe invoice and then see the address of that single invoice.

6 Chapter 2. Getting started

CHAPTER 3

Custom permissions

To implement a custom permission, base it on rest_delegated_permissions.BasePermission. For ex-
ample the following permission grants access to the user that is the owner of an invoice:

...

class Invoice(models.Model):
owner = models.ForeingKey(User, ...)
...

class OwnerPermission(BasePermission):

def has_object_permission(self, request, view, obj):
return obj.owner == request.user

def filter(self, rest_permissions, filtered_queryset,
user, action):

yield filtered_queryset.filter(owner=user)

@perms.apply(permissions=OwnerPermission())
class InvoiceViewSet(ModelViewSet):

...

Now, when you GET .../invoice, you’ll receive only those to which you are the owner (or have django/django
guardian) permissions. If you GET .../address, you’ll receive those addresses that belong only to the invoices to
which you have the rights.

7

	List of classes
	Getting started
	Preparation
	Adding permissions

	Custom permissions

